Session Information
09 SES 03 C, Testing Theory and Methodology
Paper Session
Contribution
Method
Expected Outcomes
References
Abelson, R. P. (1995). Statistics as Principled Argument. Hillsdale, NJ: Lawrence Erlbaum Associates. Albaum, G. (1997). The Likert scale revisited: an alternate version. Journal of the Market Research Society, 39(2), 331-342. Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society, 53, 370-418. Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag: New York. Berger, J. O., & Wolpert, R. L. (1988). The likelihood principle. Second edition. Hayward (CA): Institute of Mathematical Statistics. Bernardo, J., & Smith, A. (2000). Bayesian Theory. New York: John Wiley & Sons. Berry, D. (1996). Statistics - A Bayesian perspective. Pacific Grove, CA: Duxbury Press. Bradley, W. J., & Schaefer, K. C. (1998). The Uses and Misuses of Data and Models: The mathematization of the human sciences. Thousand Oaks: Sage. Brannen, J. (2004). Working qualitatively and quantitatively. In C. Seale, G. Gobo, J. Gubrium, & D. Silverman (Eds), Qualitative Research Practice (pp. 312-326). London: Sage. Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 1-21. Buck, C., Cavanagh, W., & Litton, C. (1996). Bayesian Approach to Interpretating Archaeological Data. New York: John Wiley & Sons. Caskie, G. I. L., & Willis, S. L. (2006). Research Design and Methodological Issues for Adult Development and Learning. In C. Hoare (Ed.), Handbook of Adult Development and Learning (pp. 52-70). New York: Oxford University Press. Champoux, J. E. (1991). A multivariate test of job characteristics theory of work motivation. Journal of Organizational Behavior, 12, 431-446. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Second edition. Hillsdale, NJ: Lawrence Erlbaum Associates. Congdon, P. (2001). Bayesian Statistical Modelling. Chichester: John Wiley & Sons. Filzmoser, P. (2002). Robust factor analysis: methods and applications. In G. A. Marcoulides & I. Moustaki (Eds.), Latent Variable and Latent Structure Models (pp. 153-194). Mahwah, NJ: Lawrence Erlbaum Associates. Fischer, H. (2001). Pierre-Simon Laplace. In C. C. Heyde & E. Seneta (Eds.), Statisticians of the Centuries (pp. 95-100). New York: Springer. Fisher, R. A. (1935/1971). The design of experiments. Eighth edition. Hafner: New York. Fisher, R. A. (1956/1973). Statistical Methods and Scientific Inference. Third edition. Hafner: New York. Gigerenzer, G. (2000). Adaptive thinking. New York: Oxford University Press. Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The null ritual: What you always wanted to know about significance testing but were afraid to ask. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences (pp. 391-408). Thousand Oaks: Sage. Gill, J. (2002). Bayesian methods. A Social and Behavioral Sciences Approach. Boca Raton: Chapman & Hall/CRC. Gobo, G. (2004). Sampling, representativeness and generalizability. In C. Seale, J. F. Gubrium, G. Gobo, & D. Silverman (Eds.), Qualitative Research Practice (pp. 435-456). London: Sage. Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem students share with their teachers? Methods of Psychological Research Online, 7(1), 1-20. Retrieved July 3, 2007, from http://www.mpr-online.de/issue16/art1/haller.pdf Hastings, K. J. (1997). Probability and Statistics. Reading, MA: Addison-Wesley. Heckerman, D., Geiger, D., & Chickering, D. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3), 197-243. Hilario, M., Kalousisa, A., Pradosa, J., & Binzb, P.-A. (2004). Data mining for mass-spectra based diagnosis and biomarker discovery. Drug Discovery Today: BIOSILICO, 2(5), 214-222. Hoijtink, H., & Klugkist, I. (2007). Comparison of Hypothesis Testing and Bayesian Model Selection. Quality & Quantity, 41, 73-91. Hsu, W. H. (2004). Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning. Information Sciences, 163(1-3), 103-122. Hu, L., & Bentler, P. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues and applications (pp. 76-99). Thousand Oaks: Sage. Huberty, C. (1994). Applied Discriminant Analysis. New York: John Wiley & Sons. Hyland, T. (1993). Meta-competence, metaphysics and vocational expertise. Competence Assessment, 20, 22-25. Hyvärinen, A., & Oja, E. (2000). Independent Component Analysis: Algorithms and Applications. Neural Networks, 13(4-5), 411-430. Jackson, S. (2006). Research Methods and Statistics. A Critical Thinking Approach. Second edition. Belmont, CS: Thomson. Johnson, B., & Christensen, L. (2004). Educational research: Quantitative, qualitative, and mixed approaches. Second edition. Boston, MA: Pearson Education Inc. Johnson, D. H. (1995). Statistical Sirens: The Allure of Nonparametrics. Ecology, 76(6), 1998-2000. Johnson, D. R., & Creech, J. C. (1983). Ordinal Measures in Multiple Indicator Models: A Simulation Study of Categorization Error. American Sociological Review, 48, 398-407. Jöreskog, K. G. (2003). Structural Equation Modeling with Ordinal Variables using LISREL. Retrieved February 13, 2005, from http://www.ssicentral.com/lisrel/ordinal.htm Lindley, D. V. (1971). Making Decisions. London: Wiley. Lindley, D. V. (2001). Harold Jeffreys. In C. C. Heyde & E. Seneta (Eds.), Statisticians of the Centuries (pp. 402-405). New York: Springer. Marini, M., Li, X., & Fan, P. (1996). Characterizing Latent Structure: Factor Analytic and Grade of Membership Models. Sociological Methodology, 1, 133-164. Miettinen, M., Kurhila, J., Nokelainen, P., & Tirri, H. (2006). Supporting Open-Ended Discourse with Transparent Groupware. International Journal of Web Based Communities, 2(1), 17-30. Murphy, K. R., & Myors, B. (1998). Statistical Power Analysis. A Simple and General Model for Traditional and Modern Hypothesis Tests. Mahwah, NJ: Lawrence Erlbaum Associates. Muthén, B. O. (1983). Latent variable structural equation modeling with categorical data. Journal of Econometrics, 22, 48-65. Muthén, B. O. (1993). Goodness of fit with categorical and other non-normal variables. In K. A. Bollen & J. S. Long (Eds.), Testing Structural Equation Models (pp. 205-243). Newbury Park, CA: Sage. Muthén, B. O., & Kaplan D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 171-189. Muthén, L. K., & Muthén, B. O. (2001). Mplus user's guide. Second edition. Los Angeles, CA: Muthén & Muthén. Myllymäki, P., Silander, T., Tirri, H., & Uronen, P. (2001). Bayesian Data Mining on the Web with B-Course. In N. Cercone, T. Lin, & X. Wu (Eds.), Proceedings of The 2001 IEEE International Conference on Data Mining (pp. 626-629). IEEE Computer Society Press. Myllymäki, P., Silander, T., Tirri, H., & Uronen, P. (2002). B-Course: A Web-Based Tool for Bayesian and Causal Data Analysis. International Journal on Artificial Intelligence Tools, 11(3), 369-387. Myllymäki, P., & Tirri, H. (1998). Bayes-verkkojen mahdollisuudet [Possibilities of Bayesian Networks]. Teknologiakatsaus 58/98. Helsinki: TEKES. Neapolitan, R. E., & Morris, S. (2004). Probabilistic Modeling Using Bayesian Networks. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences (pp. 371-390). Thousand Oaks, CA: Sage. Nokelainen, P., Miettinen, M., Kurhila, J., Silander, T., & Tirri, H. (2002). Optimizing and profiling users online with Bayesian probabilistic modeling. In Proceedings of the International Networked Learning Conference of Natural and Artifical Intelligence Systems Organization, Berlin: ICSC-NAISO Academic Press. Nokelainen, P., Ruohotie, P., & Tirri, H. (1999). Professional Growth Determinants: Comparing Bayesian and Linear Approaches to Classification. In P. Ruohotie, H. Tirri, P. Nokelainen, & T. Silander (Eds.), Modern Modeling of Professional Growth, vol. 1 (pp. 85-120). Hämeenlinna: RCVE. Nokelainen, P., Silander, T., Ruohotie, P, & Tirri, H. (2003, August). Investigating Non-linearities with Bayesian Networks. Paper presented at the meeting of the American Psychological Association, Toronto, Canada. Nokelainen, P., Silander, T., Ruohotie, P., & Tirri, H. (2007). Investigating the Number of Non-linear and Multi-modal Relationships Between Observed Variables Measuring Growth-oriented Atmosphere. Quality & Quantity, 41(6), 869-890. Nokelainen, P., & Tirri, H. (2004). Bayesian Methods that Optimize Cross-cultural Data Analysis. In J. R. Campbell, K. Tirri, P. Ruohotie, & H. Walberg (Eds.), Cross-cultural Research: Basic Issues, Dilemmas, and Strategies (pp. 141-158). Hämeenlinna: RCVE. Nokelainen, P., Tirri, K., Campbell, J. R., & Walberg, H. (2004). Cross-cultural Factors that Account for Adult Productivity. In J. R. Campbell, K. Tirri, P. Ruohotie, & H. Walberg (Eds.), Cross-cultural Research: Basic Issues, Dilemmas, and Strategies (pp. 119-139). Hämeenlinna: RCVE. Nokelainen, P., Tirri, K., & Merenti-Välimäki, H.-L. (2007). The Influence of Self-attributions and Parental Attitude to the Development of Mathematical Talent. Gifted Child Quarterly, 51(1), 64-81. Pearl, J. (2000b). Causality. Models, Reasoning, and Inference. Cambridge: Cambridge University Press. Silander, T., & Tirri, H. (1999). Bayesian Classification. In P. Ruohotie, H. Tirri, P. Nokelainen, & T. Silander (Eds.), Modern Modeling of Professional Growth , vol. 1 (pp. 61-84). Hämeenlinna: RCVE. Silander, T., & Tirri, H. (In press). B-Course: Issues in designing a Web Service for Bayesian Data Analysis. Manuscript submitted for publication. Tirri, H. (1997) Plausible Prediction by Bayesian Interface. Department of Computer Science. Series of Publications A. Report A-1997-1. University of Helsinki. Tirri, H. (1999). What the heritage of Thomas Bayes has to offer for modern educational research? In P. Ruohotie, H. Tirri, P. Nokelainen, & T. Silander (Eds.), Modern Modeling of Professional Growth, vol. 1 (pp. 37-59). Hämeenlinna: RCVE. de Vaus, D. A. (2004). Research Design in Social Research. Third edition. London: Sage. de Vellis, R. F. (2003). Scale Development. Theory and Applications. Second edition. Thousand Oaks, CA: Sage. Zumbo, B. D., & Rupp, A. A. (2004). Responsible modeling of measurement data for appropriate inferences: Important advances in reliability and validity theory. In D. Kaplan (Ed.), Handbook of quantitative methodology for the social sciences (pp. 73-92). Newbury Park, CA: Sage Press.
Search the ECER Programme
- Search for keywords and phrases in "Text Search"
- Restrict in which part of the abstracts to search in "Where to search"
- Search for authors and in the respective field.
- For planning your conference attendance you may want to use the conference app, which will be issued some weeks before the conference
- If you are a session chair, best look up your chairing duties in the conference system (Conftool) or the app.