Session Information
27 SES 08 A, Assessment Issues in School Subjects
Paper Session
Contribution
The use of centralized testing seems to be in constant motion throughout the world. Sweden as one example, has in recent years increased the use of centralized testing of students, where mandatory national tests is introduces in more subjects and at several occasions during the primary school years. Since 2010, all students in the 9th grade in Sweden have to take national tests in one of the science subjects of physics, chemistry or biology. The aims of the tests are wide, they are supposed both to support teachers’ efforts to make equal and fair assessment and grading of students and to provide a basis for analyzing to which extent the knowledge requirements are met (National Agency for Education 2011).
In this paper we will present two studies within a project focusing on the effects of the introduction of national tests in science. The purpose of the paper is to examine first what content that is included in the tests, i. e. what knowledge is valued, and second, how the centrally controlled tests influence teachers' perceptions of what is "good" science education and how teachers perceive that the tests have influenced their teaching. Third we will compare and discuss the results from the two studies in terms of scientific literacy.
What content that should be taught and assessed within science education has not got one answer. Roberts (2011) discuss what constitutes “good” science teaching in terms of “Visions” for scientific literacy. According to Roberts, two different visions have been favoured in the western world with regard to how science should be framed in order for pupils to be “scientifically literate”. Roberts calls these visions Vision I and Vision II. Briefly, in vision I it is the scientific discipline content that is to be taught, there is a notion that the learned scientific knowledge automatically can be applied when an application is required. In vision II, the ability to apply the knowledge is not automatic, it is rather something a person needs to learn. The use of curriculum emphases is another way to categorize the possible content choices in science teaching (Roberts 1994; 2011). The typology includes seven different emphases on science and describe an epistemological content dimension about scientific knowledge and scientific activities.
Concerning teachers’ views on the influence of the tests on their practice, a common reaction to the introduction of national tests is that the teaching content is adapted to what is to be tested (Au 2007; Hamilton & Berends 2006; Orpwood 2007). Au (2007) conducted a meta-analysis of 49 American studies and found that the main effect of this type of test is that the teaching content is limited to what is to be tested, that the subject areas are fragmented into test-related pieces and that teachers increase their use of teacher-centered education. However, this picture of national tests is not clear-cut, because at the same time, Au also found that in a significant minority of the examined cases the teaching content actually expanded, that the knowledge areas were integrated and that more pupil-oriented cooperative pedagogy was used. The results suggest that the impact of the tests may depend on how they are designed. Au (2009) concludes though that this kind of formal control is a way of controlling teachers’ instructional practice, because it creates norms about what is considered “good” teaching and “good” teachers.
Method
Expected Outcomes
References
Almqvist, Jonas & Lundqvist, Eva (2013). De nationella provens innehåll: vilken scientific literacy mäts i NO-proven [The content in the national tests: what scientific literacy is assessed in the science tests?]. In Eva Lundqvist, Roger Säljö and Leif Östman (Eds.), Scientific Literacy. Teori och praktik. Stockholm: Gleerups förlag. Au, Wayne (2007): High-stakes testing and curricular control: A qualitative metasynthesis. Educational Researcher, 36, 258-267. Au, Wayne (2009). Unequal by design. High-Stake Testing and the Standardization of Inequality. New York: Routledge. Hamilton, Laura S. & Berends, Mark (2006): Instructional practices related to standards and assessments. RAND. Retrieved from http://www.rand.org/content/dam/rand/pubs/working_papers/2006/RAND_WR374.pdf Lidar, Malena, Karlberg, Martin, Lundqvist, Eva, & Almqvist, Jonas (2012): Manner of teaching and teaching traditions in Science Education: What do teachers emphasize? Paper presented at ECER in Cadiz, Spanien, September 2012. Lundqvist, Eva & Lidar, Malena (2013). Nationella prov i NO och lärares undervisningsinnehåll [National tests in science and teachers’ content selection]. Utbildning och demokrati. Tidskrift för didaktik och utbildningspolitik, 22, 85-106. National Agency for Education (2011). Om nationella prov. [About national tests]. Retrieved from http://www.skolverket.se/prov_och_bedomning/2.1100 Orpwood, Graham (2007). Assessing scientific literacy: threats and opportunities. I C. Linder, L. Östman & P-O Wickman (Eds.). Promoting scientific literacy: Science education research in transaction. Procedings of the Linnaeus Tercentenary Symposium in Uppsala, Sweden. Roberts, D. A. (1994). Developing the concept of "curriculum emphases" in science education. Nordisk Pedagogik, 14, 10-25. Roberts, D. A. (2011). Competing Visions of Scientific Literacy. The Influence of a Science Curriculum Policy Image. In Cedric Linder, Leif Östman, Douglas A. Roberts, Per-Olof Wickman, Gaalen Erickson & Allan MacKinnon (Eds.), Exploring the Landscape of Scientific Literacy. New York; Routledge.
Search the ECER Programme
- Search for keywords and phrases in "Text Search"
- Restrict in which part of the abstracts to search in "Where to search"
- Search for authors and in the respective field.
- For planning your conference attendance you may want to use the conference app, which will be issued some weeks before the conference
- If you are a session chair, best look up your chairing duties in the conference system (Conftool) or the app.