Session Information
ERG SES E 02, Pre-service Teachers and Education
Paper Session
Contribution
There is a strong emphasis on integrating Science, Technology, Engineering and Mathematics (STEM) explicitly in all levels of education in recently published reports in the USA (National Research Council, 2012; 2014). In the same vein, promoting STEM education is highlighted in many studies and reports in European and in Turkish context (Corlu, Capraro & Capraro, 2014; OECD, 2013). Although the increased attention towards STEM education in recent years, the definition of STEM is still unclear and ill structured (Bybee, 2013; Dugger, 2009) and there are plenty of definitions available in the literature. In the present study, STEM is defined as “the teaching and learning of the content and practices of disciplinary knowledge which include science and/or mathematics through the integration of the practices of engineering and engineering design of relevant technologies” (Bryan, Moore, Johnson & Roehrig, 2015, p. 23). STEM education is considered as one of the major reforms in education in the last years (Daugherty, 2013). Since teachers are the key factors for implementation of the educational reforms (Canea, 2013), teacher quality is an important issue and integration of STEM into the classroom practices requires well-trained teachers (NRC, 2010). However, research suggested that teachers have limited understanding regarding STEM integration and they experience difficulty in implementing STEM in their classrooms (Nadelson et al, 2013). Hence, there is a need for teachers being exposed to STEM teaching as early as possible (Radloff & Guzey, 2016).
Moreover, what does the integrated STEM education mean is still being discussed and there is no consensus on what is the most effective way for providing integration (Roehrig, Moore, Wang & Park, 2012; Wang, Moore, Roehrig & Park, 2011). Because of the different descriptions of STEM integration, it is difficult to support pre-service teachers for effective STEM teaching. In the first instance, pre-service teachers’ conceptualizations of STEM education need to be understood to promote them for integrated STEM teaching and design effective STEM instruction. What pre-service science teachers think about STEM education could be uncovered through their visualizations of STEM integration (Radloff & Guzey, 2016). The number of studies addressing integrated STEM visualizations are rare in the literature and among them Bybee’s (2013) theoretical visualizations provides wide range of perspectives for STEM integration and utilized in the present study. According to Bybee (2013) the continuum for visualizations ranging from STEM education referring teaching four disciplines separately and at the opposite end there is a complete integration called as transdisciplinary integration and it puts emphasis on the real-world connections of STEM. The purpose of the study is to examine how pre-service science teachers at a large university located in the capital city of Turkey visualize STEM education and investigate the rationale for their visual representations. In line with the purpose, the research question that guide the present study is “How pre-service science teachers conceptualize integrated STEM education?”. This explanatory study is considered as significant for providing information regarding pre-service science teachers’ views on STEM education both visually and textually. Moreover, literature suggested that STEM education should be a part of initial teacher education programs (Bozkurt, 2014; Mativo & Park, 2012; Rockland et al, 2010) and the present study might provide an appropriate starting point for how to design integrated STEM courses in teacher education programs, in what ways pre-service science teachers’ understanding of STEM might be enhanced and what points should be considered while preparing future teachers for integrating STEM.
Method
Expected Outcomes
References
Bozkurt, E. (2014). Mühendislik tasarım temelli fen eğitiminin fen bilgisi öğretmen adaylarının karar verme becerisi, bilimsel süreç becerileri ve sürece yönelik algılarına etkisi. (Unpublished Dissertation), Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara. Bryan, L.A., Moore, T., Johnson, C. C. & Roehrig, G. H. (2015). Integrated STEM education. In Johnson, Peters-Burton & Moore (Eds). STEM Road Map: A Framework for Integrated STEM Education (p. 203-201). New York: Routledge. Bybee, R. (2013). The case of STEM education: Challenges and opportunities. NSTA Press, Arlington. Caena, F. (2013). Supporting teacher competence development for better learning outcomes. Retrieved from http://ec.europa.eu/education/policy/school/doc/teachercomp.pdf Corlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers for the age of innovation. Egitim ve Bilim, 39(171). Dugger, W. (2010). Evolution of STEM in the United States. Technology Education Research Conference. Queensland. Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory. Aldine, Chicago. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd Ed.). Thousand Oaks: Sage Publications. Mativo, J. M., & Park, J. H. (2012). Innovative and creative K-12 engineering Strategies: Implications of preservice teacher survey. Journal of STEM Education, 13(5), 26-29. Nadelson, L. S., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM perception and preparation: Inquiry-based STEM professional development for elementary teachers. The Journal of Educational Research, 106(2), 157-168. National Research Council. (2010). A framework for science education: Preliminary public draft. Committee on Conceptual Framework for New Science Education Standards. Retrieved from http://www.aapt.org/ Resources/upload/Draft-Framework-Science-Education.pdf OECD. (2013). Sparking Innovation in STEM Education with Technology and Collaboration. Retrieved from https://www.oecd.org/edu/ceri/OECD_EDUWKP(2013)_%20Sparking%20Innovation%20in%20STEM%20education.pdf Radloff, J., & Guzey, S. (2016). Investigating preservice STEM teacher conceptions of STEM education. Journal of Science Education and Technology, 25(5), 759-774. Rockland, R., Bloom, D. S., Carpinelli, J., Burr-Alexander, L., Hirsch, L. S., & Kimmel, H. (2010). Advancing the “E” in K-12 STEM education. Journal of Technology Studies, 36(1), 53-64. Roehrig, G. H., Moore, T. J., Wang, H. H., & Park, M. S. (2012). Is adding the E enough? Investigating the impact of K‐12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112(1), 31-44. Wang, H. H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research (J-PEER), 1(2), 2.
Search the ECER Programme
- Search for keywords and phrases in "Text Search"
- Restrict in which part of the abstracts to search in "Where to search"
- Search for authors and in the respective field.
- For planning your conference attendance you may want to use the conference app, which will be issued some weeks before the conference
- If you are a session chair, best look up your chairing duties in the conference system (Conftool) or the app.