Bakker, A. (2018). Design research in education: A practical guide for early career researchers (1 ed.). Routledge. https://doi.org/10.4324/9780203701010
Blomberg, P. (2022). Learning opportunities for pre-service teachers to develop pedagogical content knowledge for statistical inference Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12), Free University of Bozen-Bolzano and ERME. https://hal.science/CERME12/search/index/?q=%2A&domain_t=math
Carlson, J., Daehler, K. R., Alonzo, A. C., Barendsen, E., Berry, A.., . . . Wilson, C. D. (2019). The Refined Consensus Model of Pedagogical Content Knowledge in Science Education. In A. Hume, R. Cooper, & A. Borowski (Eds.), Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science (pp. 77-94). Springer Singapore. https://doi.org/10.1007/978-981-13-5898-2_2
Chan, K. K. H., Rollnick, M., & Gess-Newsome, J. (2019). A Grand Rubric for Measuring Science Teachers’ Pedagogical Content Knowledge. In A. Hume, R. Cooper, & A. Borowski (Eds.), Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science (pp. 251-269). Springer Singapore. https://doi.org/https://doi.org/10.1007/978-981-13-5898-2_11
Charles, R. I. (2005). Big Ideas and Understandings as the Foundation for Elementary and Middle School Mathematics. Journal of Mathematics Education Leadership, 7(3), 9-24. https://jaymctighe.com/wp-content/uploads/2011/04/MATH-Big-Ideas_NCSM_Spr05v73p9-24.pdf
Hurst, C. (2019). Big Ideas of primary mathematics: It’s all about connections! In T.-L. Toh & J. Yeo (Eds.), Big Ideas in Mathematics: Yearbook 2019, Association of Mathematics Educators (pp. 71-93). World Scientific Publishing Co Pte Ltd. https://doi.org/10.1142/11415
Lehrer, R., & Schauble, L. (2004). Modeling Natural Variation Through Distribution. American Educational Research Journal, 41(3), 635–679. https://doi.org/10.3102/00028312041003635
Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370-391. https://doi.org/10.1002/tea.20007
Makar, K., & Rubin, A. (2009). A Framework for Thinking about Informal Statistical Inference. Statistics Education Research Journal, 8(1), 82–105. https://doi.org/10.52041/serj.v8i1.457
Robson, C., & McCartan, K. (2017). Real world research (4 ed.). John Wiley & Sons.
Shulman, L. S. (1986). Those Who Understand: Knowledge Growth. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189x015002004
Watson, C., Fitzallen, N., Fielding-Wells, J., & S., M. (2018). Statistics Education Research. In D. Ben-Zvi, K. Makar, & G. J. (Eds.), International Handbook of Research in Statistics Education (pp. 105-138). Springer International Publishing. https://doi.org/10.1007/978-3-319-66195-7
Zieffler, A., Garfield, J., & Fry, E. (2018). What Is Statistics Education? In D. Ben-Zvi, K. Makar, & J. Garfield (Eds.), International Handbook of Research in Statistics Education (pp. 37-70). Springer International Publishing. https://doi.org/10.1007/978-3-319-66195-7_2